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Goal

Our goal will be to establish the weak form of the Morse inequalities, that is Mp ≥ Bp where Bp

is the pth Betti number and Mp is the number of critical points of a Morse function h with index p.

1. The Supersymmetry Algebra
In a quantum field theory, we have a Hilbert space H which consists of things called states, |a〉.
H splits as H = H+ ⊕H− where H+ are the “bosonic” states and H− are the “fermionic” states.

A supersymmetry theory contains (Hermitian) symmetry operators Q1, ..., QN which map H+ into

H− and vice versa.

1.1. Properties of symmetry operators. Let us define the operator (−1)F on H by

(−1)Fψ = ψ for ψ ∈ H+ and (−1)Fχ = −χ for χ ∈ H−. The purpose of (−1)F is to distinguish

H+ from H−. The symmetry operators must anticommute with (−1)F :

(−1)FQi +Qi(−1)F = 0,

in particular, they are odd operators. The Qi must also commute with the Hamiltonian operator

H which generates time translations:

QiH −HQi = 0.

Finally, to specify the algebraic structure we have to require the following

Q2
i = H, for all i (1)

QiQj +QjQi = 0, for i 6= j. (2)

This is the form of the supersymmetry algebra that we will use.

1.2. Example. Let M be an n-dimensional Riemannian manifold, and denote by Ωp the space

of p-forms on M . We interpret a p-form as bosonic or fermionic according to whether p is even

or odd (for our purposes, it won’t matter which one is which). Then we can define the symmetry

operators as follows:

Q1 = d+ d∗, Q2 = i(d− d∗), H = dd∗ + d∗d

where d is the usual exterior derivative, and d∗ its adjoint. So since d2 = (d∗)2 = 0 we have the

supersymmetry relations (1) and (2).
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1.3. A generalization of the example. To prove the weak Morse inequalities, we will

need to make use of a simple generalization of the above example. Let h : M → R be a smooth

function and let t ∈ R. We define

dt = e−htdeht and d∗t = ehtd∗e−ht.

The properties of d and d∗ imply that d2t = (d∗t )
2 = 0, so defining

Q1t = dt + d∗t , Q2t = i(dt − d∗t ), Ht = dtd
∗
t + d∗tdt (3)

we see that (3) satisfies (1) and (2) for any t.

2. The Weak Morse Inequalities
2.1. Basic facts.

2.1.1. Betti numbers. We can define a Betti number Bp(t) as the number of linearly independent

p-forms which are dt-closed, but not dt-exact (i.e., the p-forms ψ such that dtψ = 0 but for which

there is no form χ for which ψ = dtχ). dt differs from d by conjugation by eht, an invertible operator.

Since eht is invertible, it gives an invertible mapping ψ 7→ ehtψ which sends closed but not exact

p-forms in the usual sense to dt-closed, but not dt-exact p-forms. Thus Bp(t) is independent of t,

and hence Bp(t) = Bp(0) = Bp, the usual pth Betti number.

2.1.2. A word on Ht. Because we have this independence of t, we get that the number of zero

eigenvalues of Ht acting on p-forms is Bp (this is what it is when t = 0). This independence of t is

really useful because for large t, the spectrum of Ht vastly simplifies. We will use this to bound Bp

above in terms of the number of critical points of h.

2.2. Critical points of h.

2.2.1. Notation. At each point p ∈ M , choose an orthonormal basis of tangent vectors ak(p). We

can think of the ak(p) as operators on the exterior algebra via contraction. Let ak∗ be the adjoint

operators of ak, these act by exterior multiplication by the 1-form dual to ak.

2.2.2. Why critical points of h? On a Riemannian manifold, we can we can speak of the covariant

second derivative of h with components
D2h

DφiDφj
in the basis dual to the ak. We can then calculate

that

Ht = dd∗ + d∗d+ t2(dh)2 +
∑
i,j

t
D2h

DφiDφj
[a∗i, aj]

where (dh)2 = γij
(
∂h
∂φi

)(
∂h
∂φj

)
is the square of the the gradient of h, evaluated with respect to

the Riemannian metric γ on M .

This expansion shows why the critical points of h are important. The term t2(dh)2 becomes large

as t becomes large, except near the critical points of h, i.e., where dh = 0. Thus the eigenfunctions
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of Ht are concentrated near the critical points of h, and an asymptotic expansion for the eigenvalues

in powers of 1
t

can be calculated in terms of the local data at the critical points.

2.2.3. Calculating the spectrum of Ht. We will consider the case of a nondegenrate Morse function

h, so that it has isolated critical points qa, and so at each of these points, the matrix
(

D2h
DφiDφj

)
is

nonsingular. Let Mp be the number of critical points with index p.

Let λ
(n)
p (t) be the nth smallest eigenvalue of Ht acting on p-forms. We will look for an asymptotic

expansion of λ
(n)
p (t) of the form:

λ(n)p (t) = t

(
A(n)
p +

B
(n)
p

t
+
C

(n)
p

t2
+ · · ·

)
. (4)

As noted above, the Bp is equal to the number of λ
(n)
p (t) which vanish. For large enough t, we can

see that the number of λ
(n)
p (t) which vanish is no larger than the number of A

(n)
p which vanish. To

establish the weak Morse inequality Mp ≥ Bp, we will need to argue that Mp is no smaller than the

number of A
(n)
p which vanish (in fact we will see that those numbers are equal).

Let φi be local coordinates so that the critical point is the origin, and the metric tensor is

Euclidean up to terms of order φ2. We can choose these coordinates so that

h(φi) = h(0) +
1

2

∑
λiφ

2
i +O(φ3)

for some λi. With these coordinates we can approximate Ht near qa as

H̄t =
∑
i

(
− ∂2

∂φ2
i

+ t2λ2iφ
2
i + tλi[a

i∗, ai]

)
(5)

We shall calculate the spectrum of (5), which we will write as

H̄t =
∑

(Hi + tλiKi)

where

Hi = − ∂2

∂φ2
i

+ t2λ2iφ
2
i , and Kj = [aj∗, aj].

The Hi and Kj commute and can be simultaneously diagonalized. The eigenvalues of Hi are

t|λi|(1 + 2Ni), Ni ∈ N0, each having multiplicity 1. The eigenvalues of Kj are ±1. Putting this

together we have the eigenvalues of Ht are

t
∑
i

(|λi|(1 + 2Ni) + λini) , Ni ∈ N0, ni = ±1 (6)

This is the spectrum of Ht. To get the eigenvalues of Ht acting on p-forms, we must require the

number of positive ni to be p.

2.3. Conclusion. In order for (6) to vanish, we must set all Ni = 0, and choose ni to be positive

if and only if λi is negative. So, expanding around any critical point, we see that Ht has precisely

one eigenvalue of 0, and it is a zero eigenvalue for p-forms if the critical point has index p. All the
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other eigenvalues are positive multiples of t. (6) gives the coefficient A
(n)
p . Thus we have that the

number of zero eigenvalues for p-forms is equal to the number of critical points of index p. But we

already know that Bp is bounded above by the number of zero eigenvalues for p-forms, and hence

Mp ≥ Bp.
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